Small Molecules Simultaneously Inhibiting p53-Murine Double Minute 2 (MDM2) Interaction and Histone Deacetylases (HDACs): Discovery of Novel Multitargeting Antitumor Agents.

Reference
He S, Dong G, Wu S, Fang K, Miao Z, Wang W, Sheng C. 2018. Small Molecules Simultaneously Inhibiting p53-Murine Double Minute 2 (MDM2) Interaction and Histone Deacetylases (HDACs): Discovery of Novel Multitargeting Antitumor Agents. J Med Chem. 61:7245–7260. doi:10.1021/acs.jmedchem.8b00664.
Abstract

p53-Murine double minute 2 (MDM2) interaction and histone deacetylases (HDACs) are important targets in antitumor drug development. Inspired by the synergistic effects between MDM2 and HDACs, the first MDM2/HDACs dual inhibitors were identified, which showed excellent activities against both targets. In particular, compound 14d was proven to be a potent and orally active MDM2/HDAC dual inhibitor, whose antitumor mechanisms were validated in cancer cells. Compound 14d showed excellent in vivo antitumor potency in the A549 xenograft model, providing a promising lead compound for the development of novel antitumor agents. Also, this proof-of-concept study offers a novel and efficient strategy for multitargeting antitumor drug discovery.