N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1.

Reference
Alexander NR, Tran NL, Rekapally H, Summers CE, Glackin C, Heimark RL. 2006. N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Res. 66:3365–9. doi:10.1158/0008-5472.CAN-05-3401.
Abstract

The gain of N-cadherin expression in carcinomas has been shown to be important in the regulation of cell migration, invasion, and survival. Here, we show that N-cadherin mRNA expression in PC-3 prostate carcinoma cells is dependent on beta(1) integrin-mediated cell adhesion to fibronectin and the basic helix-loop-helix transcription factor Twist1. Depletion of Twist1 mRNA by small interfering RNA resulted in decreased expression of both Twist1 and N-cadherin and the inhibition of cell migration. Whereas Twist1 gene expression was independent of beta(1) integrin-mediated adhesion, Twist1 protein failed to accumulate in the nuclei of cells cultured in anchorage-independent conditions. The increased nuclear accumulation of Twist1 following cell attachment was suppressed by treatment with an inhibitor of Rho kinase or a beta(1) integrin neutralizing antibody. The effect of Twist1 on induction of N-cadherin mRNA required an E-box cis-element located within the first intron (+2,627) of the N-cadherin gene. These data raise the possibility that integrin-mediated adhesion to interstitial matrix proteins during metastasis differentially regulates the nuclear/cytoplasmic translocation and DNA binding of Twist1, activating N-cadherin transcription.