Curcumin, but not curcumin-glucuronide, inhibits Smad signaling in TGFβ-dependent bone metastatic breast cancer cells and is enriched in bone compared to other tissues.

Reference
Kunihiro AG, Brickey JA, Frye JB, Luis PB, Schneider C, Funk JL. 2019. Curcumin, but not curcumin-glucuronide, inhibits Smad signaling in TGFβ-dependent bone metastatic breast cancer cells and is enriched in bone compared to other tissues. J Nutr Biochem. 63:150–156. doi:10.1016/j.jnutbio.2018.09.021.
Abstract

Breast cancer (BCa) bone metastases (BMETs) drive osteolysis via a feed-forward loop involving tumoral secretion of osteolytic factors (e.g., PTHrP) induced by bone-matrix-derived growth factors (e.g., TGFβ). In prior experiments, turmeric-derived curcumin inhibited in vivo BMET progression and in vitro TGFβ/Smad-signaling in a TGFβ-stimulated PTHrP-dependent human xenograft BCa BMET model (MDA-SA cells). However, it is unclear whether curcumin or curcumin-glucuronide mediates in vivo protection since curcumin-glucuronide is the primary circulating metabolite in rodents and in humans. Thus, effects of curcumin vs. curcumin-glucuronide on Smad-dependent TGFβ signaling were compared in a series of BCa cell lines forming TGFβ-dependent BMET in murine models, and tissue-specific metabolism of curcumin in mice was examined by LC-MS. While curcumin inhibited TGFβ-receptor-mediated Smad2/3 phosphorylation in all BCa cells studied (human MDA-SA, MDA-1833, MDA-2287 and murine 4T1 cells), curcumin-glucuronide did not. Similarly, curcumin, but not curcumin-glucuronide, blocked TGFβ-stimulated secretion of PTHrP from MDA-SA and 4T1 cells. Because the predominant serum metabolite, curcumin-glucuronide, lacked bioactivity, we examined tissue-specific metabolism of curcumin in mice. Compared to serum and other organs, free curcumin (both absolute and percentage of total) was significantly increased in bone, which was also a rich source of enzymatic deglucuronidation activity. Thus, curcumin, and not curcumin-glucuronide, appears to inhibit bone-tropic BCa cell TGFβ-signaling and to undergo site-specific activation (deconjugation) within the bone microenvironment. These findings suggest that circulating curcumin-glucuronide may act as a prodrug that preferentially targets bone, a process that may contribute to the bone-protective effects of curcumin and other highly glucuronidated dietary polyphenols.