Targeting Survivin Inhibits Renal Cell Carcinoma Progression and Enhances the Activity of Temsirolimus.

Reference
Carew JS, Espitia CM, Zhao W, Mita MM, Mita AC, Nawrocki ST. 2015. Targeting Survivin Inhibits Renal Cell Carcinoma Progression and Enhances the Activity of Temsirolimus. Mol Cancer Ther. 14:1404–13. doi:10.1158/1535-7163.MCT-14-1036.
Abstract

Elevated expression of the antiapoptotic factor survivin has been implicated in cancer cell survival and disease progression. However, its specific contribution to renal cell carcinoma (RCC) pathogenesis is not well defined. We investigated the roles of survivin in RCC tumor progression, resistance to mTOR inhibitors, and evaluated the therapeutic activity of the survivin suppressant YM155 in RCC models. Here, we report that survivin expression levels were significantly higher in RCC cell lines compared with normal renal cells. Stable targeted knockdown of survivin completely abrogated the ability of 786-O RCC tumors to grow in mice, thus demonstrating its importance as a regulator of RCC tumorigenesis. We next explored multiple strategies to therapeutically inhibit survivin function in RCC. Treatment with the mTOR inhibitor temsirolimus partially diminished survivin levels and this effect was augmented by the addition of YM155. Further analyses revealed that, in accordance with their combined anti-survivin effects, YM155 significantly improved the anticancer activity of temsirolimus in a panel of RCC cell lines in vitro and in xenograft models in vivo. Similar to pharmacologic inhibition of survivin, shRNA-mediated silencing of survivin expression not only inhibited RCC tumor growth, but also significantly sensitized RCC cells to temsirolimus therapy. Subsequent experiments demonstrated that the effectiveness of this dual survivin/mTOR inhibition strategy was mediated by a potent decrease in survivin levels and corresponding induction of apoptosis. Our findings establish survivin inhibition as a novel approach to improve RCC therapy that warrants further investigation.